Machine Learning-Based 5G-and-Beyond Channel Estimation for MIMO-OFDM Communication Systems

Channel estimation plays a critical role in the system performance of wireless networks. In addition, deep learning has demonstrated significant improvements in enhancing the communication reliability and reducing the computational complexity of 5G-and-beyond networks. Even though least squares (LS)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-07, Vol.21 (14), p.4861
Hauptverfasser: Le, Ha An, Van Chien, Trinh, Nguyen, Tien Hoa, Choo, Hyunseung, Nguyen, Van Duc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Channel estimation plays a critical role in the system performance of wireless networks. In addition, deep learning has demonstrated significant improvements in enhancing the communication reliability and reducing the computational complexity of 5G-and-beyond networks. Even though least squares (LS) estimation is popularly used to obtain channel estimates due to its low cost without any prior statistical information regarding the channel, this method has relatively high estimation error. This paper proposes a new channel estimation architecture with the assistance of deep learning in order to improve the channel estimation obtained by the LS approach. Our goal is achieved by utilizing a MIMO (multiple-input multiple-output) system with a multi-path channel profile for simulations in 5G-and-beyond networks under the level of mobility expressed by the Doppler effects. The system model is constructed for an arbitrary number of transceiver antennas, while the machine learning module is generalized in the sense that an arbitrary neural network architecture can be exploited. Numerical results demonstrate the superiority of the proposed deep learning-based channel estimation framework over the other traditional channel estimation methods popularly used in previous works. In addition, bidirectional long short-term memory offers the best channel estimation quality and the lowest bit error ratio among the considered artificial neural network architectures.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21144861