Numerical Study of the Force Characteristics and Flow Field Patterns of a Cylinder in the Internal Solitary Wave

The density of the ocean is unevenly distributed along the depth direction, showing a stratified structure. When there is an external disturbance, large-scale internal solitary waves are easily generated. The internal solitary waves are bounded by the intermediate pycnocline, and the currents in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of marine science and engineering 2024-06, Vol.12 (6), p.906
Hauptverfasser: Zhang, Miao, Hu, Haibao, Ouahsine, Abdellatif, Du, Peng, Huang, Xiao, Xie, Luo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The density of the ocean is unevenly distributed along the depth direction, showing a stratified structure. When there is an external disturbance, large-scale internal solitary waves are easily generated. The internal solitary waves are bounded by the intermediate pycnocline, and the currents in the upper and lower layers will flow in opposite directions. This generates strong shear forces that threaten the safety of marine structures. In this paper, the flow field distribution characteristics of a cylinder under the action of internal solitary waves at different scales are analyzed as a research object. The whole cylinder is discretized into 40 regions, and the horizontal force applied to each section of the cylinder is extracted. The force characteristics of the cylinder are analyzed. It is concluded that the pressure is the main factor determining the magnitude of the total combined force. In addition, the paper extracts the main flow structures from the modal decomposition point of view and explains the reasons affecting the force behavior of the cylinder.
ISSN:2077-1312
2077-1312
DOI:10.3390/jmse12060906