Odd Periodic Solutions of Fully Second-Order Ordinary Differential Equations with Superlinear Nonlinearities
This paper is concerned with the existence of periodic solutions for the fully second-order ordinary differential equation u′′(t)=ft,ut,u′t, t∈R, where the nonlinearity f:R3→R is continuous and f(t,x,y) is 2π-periodic in t. Under certain inequality conditions that f(t,x,y) may be superlinear growth...
Gespeichert in:
Veröffentlicht in: | Journal of function spaces 2017-01, Vol.2017 (2017), p.1-5 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the existence of periodic solutions for the fully second-order ordinary differential equation u′′(t)=ft,ut,u′t, t∈R, where the nonlinearity f:R3→R is continuous and f(t,x,y) is 2π-periodic in t. Under certain inequality conditions that f(t,x,y) may be superlinear growth on (x,y), an existence result of odd 2π-periodic solutions is obtained via Leray-Schauder fixed point theorem. |
---|---|
ISSN: | 2314-8896 2314-8888 |
DOI: | 10.1155/2017/4247365 |