Odd Periodic Solutions of Fully Second-Order Ordinary Differential Equations with Superlinear Nonlinearities

This paper is concerned with the existence of periodic solutions for the fully second-order ordinary differential equation u′′(t)=ft,ut,u′t, t∈R, where the nonlinearity f:R3→R is continuous and f(t,x,y) is 2π-periodic in t. Under certain inequality conditions that f(t,x,y) may be superlinear growth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of function spaces 2017-01, Vol.2017 (2017), p.1-5
Hauptverfasser: Li, Yongxiang, Guo, Lanjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the existence of periodic solutions for the fully second-order ordinary differential equation u′′(t)=ft,ut,u′t, t∈R, where the nonlinearity f:R3→R is continuous and f(t,x,y) is 2π-periodic in t. Under certain inequality conditions that f(t,x,y) may be superlinear growth on (x,y), an existence result of odd 2π-periodic solutions is obtained via Leray-Schauder fixed point theorem.
ISSN:2314-8896
2314-8888
DOI:10.1155/2017/4247365