Perspectives of Pitocin administration on behavioral outcomes in the pediatric population: recent insights and future implications

Oxytocin plays an important role in the regulation of parturition as this peptide hormone promotes uterine smooth muscle contractility in gravid women undergoing labor. Here, we review the impact of Pitocin administration on behavioral outcomes in the pediatric population. Pitocin is a synthetic pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2020-05, Vol.6 (5), p.e04047-e04047, Article e04047
Hauptverfasser: Torres, German, Mourad, Mervat, Leheste, Joerg R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxytocin plays an important role in the regulation of parturition as this peptide hormone promotes uterine smooth muscle contractility in gravid women undergoing labor. Here, we review the impact of Pitocin administration on behavioral outcomes in the pediatric population. Pitocin is a synthetic preparation of oxytocin widely used in the obstetric practice for the management of labor and postpartum hemorrhage. We begin by tracing the neuroanatomy of oxytocin-containing cells from an evolutionary perspective and then summarize key findings on behavioral and neural activity reported from offspring dosed with Pitocin during vaginal delivery. Finally, we discuss future directions that are experimentally tractable for understanding the developmental consequences of Pitocin administration on a small but growing subset of children worldwide. Given that fetal past experiences can shape the future behavior of the adult, further work on oxytocin signaling pathways will provide valuable references and insights for early-brain development and state-dependent regulation of behavioral outcome. Neuroscience; Behavioral neuroscience; Cellular neuroscience; Systems neuroscience; Evolutionary biology; Women's health; Health profession; Oxytocin signaling; Epigenetic phenomena; Breathing behavior; Misfolded proteins; Cardiovascular function
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2020.e04047