Adaptive Gradient-Based Iterative Algorithm for Multivariable Controlled Autoregressive Moving Average Systems Using the Data Filtering Technique
The identification problem of multivariable controlled autoregressive systems with measurement noise in the form of the moving average process is considered in this paper. The key is to filter the input–output data using the data filtering technique and to decompose the identification model into two...
Gespeichert in:
Veröffentlicht in: | Complexity (New York, N.Y.) N.Y.), 2018-01, Vol.2018 (2018), p.1-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The identification problem of multivariable controlled autoregressive systems with measurement noise in the form of the moving average process is considered in this paper. The key is to filter the input–output data using the data filtering technique and to decompose the identification model into two subidentification models. By using the negative gradient search, an adaptive data filtering-based gradient iterative (F-GI) algorithm and an F-GI with finite measurement data are proposed for identifying the parameters of multivariable controlled autoregressive moving average systems. In the numerical example, we illustrate the effectiveness of the proposed identification methods. |
---|---|
ISSN: | 1076-2787 1099-0526 |
DOI: | 10.1155/2018/9598307 |