Adaptive Gradient-Based Iterative Algorithm for Multivariable Controlled Autoregressive Moving Average Systems Using the Data Filtering Technique

The identification problem of multivariable controlled autoregressive systems with measurement noise in the form of the moving average process is considered in this paper. The key is to filter the input–output data using the data filtering technique and to decompose the identification model into two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2018-01, Vol.2018 (2018), p.1-11
Hauptverfasser: Ding, Wenfang, Jiang, Xiao, Ma, Hao, Pan, Jian, Ding, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The identification problem of multivariable controlled autoregressive systems with measurement noise in the form of the moving average process is considered in this paper. The key is to filter the input–output data using the data filtering technique and to decompose the identification model into two subidentification models. By using the negative gradient search, an adaptive data filtering-based gradient iterative (F-GI) algorithm and an F-GI with finite measurement data are proposed for identifying the parameters of multivariable controlled autoregressive moving average systems. In the numerical example, we illustrate the effectiveness of the proposed identification methods.
ISSN:1076-2787
1099-0526
DOI:10.1155/2018/9598307