GSPE Inhibits HMGB1 Release, Attenuating Renal IR-Induced Acute Renal Injury and Chronic Renal Fibrosis

Grape seed proanthocyanindin extract (GSPE) is a polyphenolic bioflavonoid derived from grape seeds and has been widely studied for its potent antioxidant, anti-inflammatory and antitumor activities. HMGB1 is a newly discovered danger-associated molecular pattern (DAMP) that has potent proinflammato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2016-10, Vol.17 (10), p.1647-1647
Hauptverfasser: Zhan, Juan, Wang, Kun, Zhang, Conghui, Zhang, Chunxiu, Li, Yueqiang, Zhang, Ying, Chang, Xiaoyan, Zhou, Qiaodan, Yao, Ying, Liu, Yanyan, Xu, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Grape seed proanthocyanindin extract (GSPE) is a polyphenolic bioflavonoid derived from grape seeds and has been widely studied for its potent antioxidant, anti-inflammatory and antitumor activities. HMGB1 is a newly discovered danger-associated molecular pattern (DAMP) that has potent proinflammatory effects once released by necrotic cells. However, the effect of GSPE on the HMGB1, and the relationship of those two with acute kidney injury and chronic kidney fibrosis are unknown. This study aimed to investigate the impact of GSPE on acute kidney injury and chronic fibrosis. C57bl/6 mice were subjected to bilateral ischemia/reperfusion (I/R) and unilateral I/R with or without GSPE administration. After bilateral I/R, mice administered GSPE had a marked improvement in renal function (BUN and Cr), decreased pathological damage and reduced inflammation. In unilateral I/R, mice subjected GSPE showed reduced tubulointerstitial fibrosis and decreased inflammatory reaction. The renoprotection of GSPE on both models was associated with the inhibition of HMGB1 nucleocytoplasmic shuttling and release, which can amplify the inflammation through binding to its downstream receptor TLR4 and facilitated P65 transcription. Thus, we have reason to believe that GSPE could be a good alternative therapy for the prevention and treatment of IR-induced renal injury and fibrosis in clinical practice.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms17101647