A DQN-Based Multi-Objective Participant Selection for Efficient Federated Learning

As a new distributed machine learning (ML) approach, federated learning (FL) shows great potential to preserve data privacy by enabling distributed data owners to collaboratively build a global model without sharing their raw data. However, the heterogeneity in terms of data distribution and hardwar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Future internet 2023-06, Vol.15 (6), p.209
Hauptverfasser: Xu, Tongyang, Liu, Yuan, Ma, Zhaotai, Huang, Yiqiang, Liu, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a new distributed machine learning (ML) approach, federated learning (FL) shows great potential to preserve data privacy by enabling distributed data owners to collaboratively build a global model without sharing their raw data. However, the heterogeneity in terms of data distribution and hardware configurations make it hard to select participants from the thousands of nodes. In this paper, we propose a multi-objective node selection approach to improve time-to-accuracy performance while resisting malicious nodes. We firstly design a deep reinforcement learning-assisted FL framework. Then, the problem of multi-objective node selection under this framework is formulated as a Markov decision process (MDP), which aims to reduce the training time and improve model accuracy simultaneously. Finally, a Deep Q-Network (DQN)-based algorithm is proposed to efficiently solve the optimal set of participants for each iteration. Simulation results show that the proposed method not only significantly improves the accuracy and training speed of FL, but also has stronger robustness to resist malicious nodes.
ISSN:1999-5903
1999-5903
DOI:10.3390/fi15060209