Cocaine-mediated circadian reprogramming in the striatum through dopamine D2R and PPARγ activation

Substance abuse disorders are linked to alteration of circadian rhythms, although the molecular and neuronal pathways implicated have not been fully elucidated. Addictive drugs, such as cocaine, induce a rapid increase of dopamine levels in the brain. Here, we show that acute administration of cocai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-09, Vol.11 (1), p.4448-14, Article 4448
Hauptverfasser: Brami-Cherrier, Karen, Lewis, Robert G., Cervantes, Marlene, Liu, Yu, Tognini, Paola, Baldi, Pierre, Sassone-Corsi, Paolo, Borrelli, Emiliana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Substance abuse disorders are linked to alteration of circadian rhythms, although the molecular and neuronal pathways implicated have not been fully elucidated. Addictive drugs, such as cocaine, induce a rapid increase of dopamine levels in the brain. Here, we show that acute administration of cocaine triggers reprogramming in circadian gene expression in the striatum, an area involved in psychomotor and rewarding effects of drugs. This process involves the activation of peroxisome protein activator receptor gamma (PPARγ), a nuclear receptor involved in inflammatory responses. PPARγ reprogramming is altered in mice with cell-specific ablation of the dopamine D2 receptor (D2R) in the striatal medium spiny neurons (MSNs) (iMSN-D2RKO). Administration of a specific PPARγ agonist in iMSN-D2RKO mice elicits substantial rescue of cocaine-dependent control of circadian genes. These findings have potential implications for development of strategies to treat substance abuse disorders. Drugs of abuse have been shown to perturb circadian rhythms. Here, the authors show in mice that cocaine exposure modulates circadian gene expression in the striatum through a previously unappreciated pathway that involves dopamine D2 receptors and the nuclear receptor PPARγ.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-18200-6