Characterization of Agronomical and Quality Traits of Winter Wheat (Triticum aestivum L.) for Fusarium Head Blight Pressure in Different Environments

For food security, it is essential to identify stable, high-yielding wheat varieties with lower disease severity. This is particularly important due to climate change, which results in pressure due to the increasing occurrence of Fusarium head blight (FHB). The objective of this study was to evaluat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy (Basel) 2021-01, Vol.11 (2), p.213
Hauptverfasser: Spanic, Valentina, Cosic, Josipa, Zdunic, Zvonimir, Drezner, Georg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For food security, it is essential to identify stable, high-yielding wheat varieties with lower disease severity. This is particularly important due to climate change, which results in pressure due to the increasing occurrence of Fusarium head blight (FHB). The objective of this study was to evaluate the stability of winter wheat (Triticum aestivum L.) grain yield under different environmental conditions. Twenty-five winter wheat varieties were evaluated under two treatments (naturally-disease infected (T1) and FHB artificial stress (T2)) during two growing seasons (2018–2019 to 2019–2020) in Osijek and in 2019–2020 in Tovarnik. The interaction between varieties and different environments for grain yield was described using the additive main-effects and multiplicative interaction (AMMI) effects model. The Kraljica and Fifi varieties were located near the origin of the biplot, thus indicating non-sensitivity to different environmental conditions. Principal component analysis (PCA) was used to understand the trait and environmental relationships. PC1 alone contributed 42.5% of the total variation, which was mainly due to grain yield, 1000 kernel weight and test weight in that respective order. PC2 contributed 21.1% of the total variation mainly through the total sedimentation value, test weight, wet gluten and protein content ratio (VG/P) and wet gluten content, in descending order.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy11020213