Design and Evaluation of a Novel Venturi-Based Spirometer for Home Respiratory Monitoring

The high cost and limited availability of home spirometers pose a significant barrier to effective respiratory disease management and monitoring. To address this challenge, this paper introduces a novel Venturi-based spirometer designed for home use, leveraging the Bernoulli principle. The device fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-08, Vol.24 (17), p.5622
Hauptverfasser: Ferreira Nunes, Mariana, Plácido da Silva, Hugo, Raposo, Liliana, Rodrigues, Fátima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The high cost and limited availability of home spirometers pose a significant barrier to effective respiratory disease management and monitoring. To address this challenge, this paper introduces a novel Venturi-based spirometer designed for home use, leveraging the Bernoulli principle. The device features a 3D-printed Venturi tube that narrows to create a pressure differential, which is measured by a differential pressure sensor and converted into airflow rate. The airflow is then integrated over time to calculate parameters such as the Forced Vital Capacity (FVC) and Forced Expiratory Volume in one second (FEV ). The system also includes a bacterial filter for hygienic use and a circuit board for data acquisition and streaming. Evaluation with eight healthy individuals demonstrated excellent test-retest reliability, with intraclass correlation coefficients (ICCs) of 0.955 for FVC and 0.853 for FEV . Furthermore, when compared to standard Pulmonary Function Test (PFT) equipment, the spirometer exhibited strong correlation, with Pearson correlation coefficients of 0.992 for FVC and 0.968 for FEV , and high reliability, with ICCs of 0.987 for FVC and 0.907 for FEV . These findings suggest that the Venturi-based spirometer could significantly enhance access to spirometry at home. However, further large-scale validation and reliability studies are necessary to confirm its efficacy and reliability for widespread use.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24175622