Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5

In this study the effect of dust aerosol on upper tropospheric cirrus clouds through heterogeneous ice nucleation is investigated in the Community Atmospheric Model version 5 (CAM5) with two ice nucleation parameterizations. Both parameterizations consider homogeneous and heterogeneous nucleation an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics 2012-12, Vol.12 (24), p.12061-12079
Hauptverfasser: Liu, X, Shi, X, Zhang, K, Jensen, E. J, Gettelman, A, Barahona, D, Nenes, A, Lawson, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study the effect of dust aerosol on upper tropospheric cirrus clouds through heterogeneous ice nucleation is investigated in the Community Atmospheric Model version 5 (CAM5) with two ice nucleation parameterizations. Both parameterizations consider homogeneous and heterogeneous nucleation and the competition between the two mechanisms in cirrus clouds, but differ significantly in the number concentration of heterogeneous ice nuclei (IN) from dust. Heterogeneous nucleation on dust aerosol reduces the occurrence frequency of homogeneous nucleation and thus the ice crystal number concentration in the Northern Hemisphere (NH) cirrus clouds compared to simulations with pure homogeneous nucleation. Global and annual mean shortwave and longwave cloud forcing are reduced by up to 2.0 plus or minus 0.1 W m super(-2) (1 sigma uncertainty) and 2.4 plus or minus 0.1 W m super(-2), respectively due to the presence of dust IN, with the net cloud forcing change of -0.40 plus or minus 0.20 W m super(-2). Comparison of model simulations with in situ aircraft data obtained in NH mid-latitudes suggests that homogeneous ice nucleation may play an important role in the ice nucleation at these regions with temperatures of 205-230 K. However, simulations overestimate observed ice crystal number concentrations in the tropical tropopause regions with temperatures of 190-205 K, and overestimate the frequency of occurrence of high ice crystal number concentration (> 200 L super(-1)) and underestimate the frequency of low ice crystal number concentration (< 30 L super(-1)) at NH mid-latitudes. These results highlight the importance of quantifying the number concentrations and properties of heterogeneous IN (including dust aerosol) in the upper troposphere from the global perspective.
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-12-12061-2012