Neural Network Based Traffic Prediction for Wireless Data Networks
In a wireless network environment accurate and timely estimation or prediction of network traffic has gained much importance in the recent past. The network applications use traffic prediction results to maintain its performance by adopting its behaviors. Network Service provider will use the predic...
Gespeichert in:
Veröffentlicht in: | International journal of computational intelligence systems 2008-12, Vol.1 (4), p.379-389 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a wireless network environment accurate and timely estimation or prediction of network traffic has gained much importance in the recent past. The network applications use traffic prediction results to maintain its performance by adopting its behaviors. Network Service provider will use the prediction values in ensuring the better Quality of Service(QoS) to the network users by admission control and load balancing by inter or intra network handovers. This paper presents modeling and prediction of wireless network traffic. Here traffic is modeled as nonlinear and non-stationary time series. The nonlinear and non-stationary time series traffic is predicted using neural network and statistical methods. The results of both the methods are compared on different time scales or time granularity. The Neural Network (NN) architectures used in this study are Recurrent Radial Basis Function Network (RRBFN) and Echo state network (ESN).The statistical model used here in this work is Fractional Auto Regressive Integrated Moving Average (FARIMA) model. The traffic prediction accuracy of neural network and statistical models are in the range of 96.4% to 98.3% and 78.5% to 80.2% respectively. |
---|---|
ISSN: | 1875-6891 1875-6883 1875-6883 |
DOI: | 10.2991/ijcis.2008.1.4.9 |