Existence of solutions to differential inclusions with primal lower nice functions
We prove the existence of absolutely continuous solutions to the differential inclusion $$ \dot{x}(t)\in F(x(t))+h(t,x(t)), $$ where F is an upper semi-continuous set-valued function with compact values such that $F(x(t))\subset \partial f(x(t))$ on [0,T], where f is a primal lower nice function, an...
Gespeichert in:
Veröffentlicht in: | Electronic journal of differential equations 2016-02, Vol.2016 (48), p.1-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the existence of absolutely continuous solutions to the differential inclusion $$ \dot{x}(t)\in F(x(t))+h(t,x(t)), $$ where F is an upper semi-continuous set-valued function with compact values such that $F(x(t))\subset \partial f(x(t))$ on [0,T], where f is a primal lower nice function, and h a single valued Caratheodory perturbation. |
---|---|
ISSN: | 1072-6691 |