Existence of solutions to differential inclusions with primal lower nice functions

We prove the existence of absolutely continuous solutions to the differential inclusion $$ \dot{x}(t)\in F(x(t))+h(t,x(t)), $$ where F is an upper semi-continuous set-valued function with compact values such that $F(x(t))\subset \partial f(x(t))$ on [0,T], where f is a primal lower nice function, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of differential equations 2016-02, Vol.2016 (48), p.1-9
Hauptverfasser: Nora Fetouci, Mustapha Fateh Yarou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the existence of absolutely continuous solutions to the differential inclusion $$ \dot{x}(t)\in F(x(t))+h(t,x(t)), $$ where F is an upper semi-continuous set-valued function with compact values such that $F(x(t))\subset \partial f(x(t))$ on [0,T], where f is a primal lower nice function, and h a single valued Caratheodory perturbation.
ISSN:1072-6691