Ternary logic decoder using independently controlled double-gate Si-NW MOSFETs
A ternary logic decoder (TLD) is demonstrated with independently controlled double-gate (ICDG) silicon-nanowire (Si-NW) MOSFETs to confirm a feasibility of mixed radix system (MRS). The TLD is essential component for realization of the MRS. The ICDG Si-NW MOSFET resolves the limitations of the conve...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2021-06, Vol.11 (1), p.13018-13018, Article 13018 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A ternary logic decoder (TLD) is demonstrated with independently controlled double-gate (ICDG) silicon-nanowire (Si-NW) MOSFETs to confirm a feasibility of mixed radix system (MRS). The TLD is essential component for realization of the MRS. The ICDG Si-NW MOSFET resolves the limitations of the conventional multi-threshold voltage (multi-
V
th
) schemes required for the TLD. The ICDG Si-NW MOSFETs were fabricated and characterized. Afterwards, their electrical characteristics were modeled and fitted semi-empirically with the aid of SILVACO ATLAS TCAD simulator. The circuit performance and power consumption of the TLD were analyzed using ATLAS mixed-mode TCAD simulations. The TLD showed a power-delay product of 35 aJ for a gate length (
L
G
) of 500 nm and that of 0.16 aJ for
L
G
of 14 nm. Thanks to its inherent CMOS-compatibility and scalability, the TLD based on the ICDG Si-NW MOSFETs would be a promising candidate for a MRS using ternary and binary logic. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-92378-7 |