Digital logic circuits in yeast with CRISPR-dCas9 NOR gates
Natural genetic circuits enable cells to make sophisticated digital decisions. Building equally complex synthetic circuits in eukaryotes remains difficult, however, because commonly used components leak transcriptionally, do not arbitrarily interconnect or do not have digital responses. Here, we des...
Gespeichert in:
Veröffentlicht in: | Nature communications 2017-05, Vol.8 (1), p.15459-15459, Article 15459 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Natural genetic circuits enable cells to make sophisticated digital decisions. Building equally complex synthetic circuits in eukaryotes remains difficult, however, because commonly used components leak transcriptionally, do not arbitrarily interconnect or do not have digital responses. Here, we designed
dCas9-Mxi1-
based NOR gates in
Saccharomyces cerevisiae
that allow arbitrary connectivity and large genetic circuits. Because we used the chromatin remodeller
Mxi1
, our gates showed minimal leak and digital responses. We built a combinatorial library of NOR gates that directly convert guide RNA (gRNA) inputs into gRNA outputs, enabling the gates to be ‘wired’ together. We constructed logic circuits with up to seven gRNAs, including repression cascades with up to seven layers. Modelling predicted the NOR gates have effectively zero transcriptional leak explaining the limited signal degradation in the circuits. Our approach enabled the largest, eukaryotic gene circuits to date and will form the basis for large, synthetic, cellular decision-making systems.
The leakiness of commonly used genetic components can make the construction of complex synthetic circuits difficult. Here the authors construct NOR gate architecture, using dCas9 fused to the chromatin remodeller Mxi1, that can be wired together into complex circuits. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms15459 |