The effect of carbonization temperature on the capacity and mechanisms of Pb(II) adsorption by microalgae residue-derived biochar

This study investigated the adsorption characterizations and mechanisms of lead (Pb) on biochar-derived microalgae residue (MB) produced at different pyrolytic temperatures. Six different MB samples were prepared from Chlorella sp. (CB) and Spirulina sp. (SB) in the temperature range of 200–600 ℃, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology and environmental safety 2021-12, Vol.225, p.112750-112750, Article 112750
Hauptverfasser: Yang, Zijun, Hou, Jun, Wu, Jun, Miao, Lingzhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigated the adsorption characterizations and mechanisms of lead (Pb) on biochar-derived microalgae residue (MB) produced at different pyrolytic temperatures. Six different MB samples were prepared from Chlorella sp. (CB) and Spirulina sp. (SB) in the temperature range of 200–600 ℃, and microalgae residue power (MP) was used as a control. The effect of pH, adsorption kinetics and isotherms were studied for the different MBs, and a chemical analysis of Pb2+-loaded MP and MB was performed by SEM-EDS, XRD, XPS, FTIR, and Boehm titration. The results showed that Pb2+ adsorption on MP and MB was a monolayer chemical adsorption process. Precipitation with minerals, metal ion exchange, oxygen/nitrogen-containing functional groups (OFGs/NFGs), and coordination of Pb2+ with π electrons jointly contributed to Pb2+ adsorption on MP and MB. More specifically, the contribution of each mechanism depended on the pyrolytic temperature. The contribution of surface complexation and ion exchange decreased with increasing pyrolytic temperature due to the loss of OFGs/NFGs and decreasing metal ion content, while the contribution of precipitation and Pb2+-π interaction significantly increased. Overall, precipitation with minerals and ion exchange dominated Pb2+ adsorption on MP and MB, which accounted for 65.20–74.40% of the total adsorption capacity. Surface precipitation contributed to a maximum adsorption capacity for high-temperature CB and SB (600 ℃) of up to 131.41 mg/g and 154.56 mg/g, respectively. In conclusion, MB adsorbents are a promising material for the remediation of heavy metal-bearing aquatic environments. [Display omitted] •Adsorption capacities of Pb2+ on MP and MBs are affected by pyrolysis temperature.•CB600 and SB600 have the highest Pb2+ adsorption capacity (131.4 mg/g and 154.5 mg/g).•Precipitation and ion exchange mechanisms dominates Pb2+ adsorption on the MP and MBs.•MBs are economical and potentially valuable adsorbents for heavy metals treatment.
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2021.112750