Cludoop: An Efficient Distributed Density-Based Clustering for Big Data Using Hadoop

Density-based clustering for big data is critical for many modern applications ranging from Internet data processing to massive-scale moving object management. This paper proposes Cludoop algorithm, an efficient distributed density-based clustering for big data using Hadoop. First, we propose a seri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of distributed sensor networks 2015-01, Vol.2015 (6), p.579391
Hauptverfasser: Yu, Yanwei, Zhao, Jindong, Wang, Xiaodong, Wang, Qin, Zhang, Yonggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Density-based clustering for big data is critical for many modern applications ranging from Internet data processing to massive-scale moving object management. This paper proposes Cludoop algorithm, an efficient distributed density-based clustering for big data using Hadoop. First, we propose a serial clustering algorithm CluC by leveraging cell partition optimization and c-cluster to fast find clusters. CluC completes classification of the points using the relationships of connected cells around points instead of expensive completed neighbor query, which significantly reduce the number of distance calculations. Second, we propose the Cludoop, which can efficiently cluster very-large-scale data in parallel using already existing data partition on Map/Reduce platform. It employs the proposed serial clustering CluC as a plugged-in clustering on parallel mapper, along with a cell description instead of completed cell in transmission to reduce both network and I/O costs. Guided by proposed cell-based principles, we also design a Merging-Refinement-Merging 3-step framework to merge c-clusters on the overlay of assigned preclustering result on reducer. Finally, our comprehensive experimental evaluation on 10 network-connected commercial PCs, using both huge-volume real and synthetic data, demonstrates (1) the effectiveness of our algorithm in finding correct clusters with arbitrary shape and (2) the fact that our proposed algorithm exhibits better scalability and efficiency than state-of-the-art method.
ISSN:1550-1329
1550-1477
1550-1477
DOI:10.1155/2015/579391