Therapeutic mechanism of treating SMMC-7721 liver cancer cells with magnetic fluid hyperthermia using Fe₂O₃ nanoparticles
This study aimed to investigate the therapeutic mechanism of treating SMMC-7721 liver cancer cells with magnetic fluid hyperthermia (MFH) using Fe₂O₃ nanoparticles. Hepatocarcinoma SMMC-7721 cells cultured in vitro were treated with ferrofluid containing Fe₂O₃ nanoparticles and irradiated with an al...
Gespeichert in:
Veröffentlicht in: | Brazilian journal of medical and biological research 2014-11, Vol.47 (11), p.947-959 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aimed to investigate the therapeutic mechanism of treating SMMC-7721 liver cancer cells with magnetic fluid hyperthermia (MFH) using Fe₂O₃ nanoparticles. Hepatocarcinoma SMMC-7721 cells cultured in vitro were treated with ferrofluid containing Fe₂O₃ nanoparticles and irradiated with an alternating radio frequency magnetic field. The influence of the treatment on the cells was examined by inverted microscopy, MTT and flow cytometry. To study the therapeutic mechanism of the Fe₂O₃ MFH, Hsp70, Bax, Bcl-2 and p53 were detected by immunocytochemistry and reverse transcription polymerase chain reaction (RT-PCR). It was shown that Fe₂O₃ MFH could cause cellular necrosis, induce cellular apoptosis, and significantly inhibit cellular growth, all of which appeared to be dependent on the concentration of the Fe₂O₃nanoparticles. Immunocytochemistry results showed that MFH could induce high expression of Hsp70 and Bax, decrease the expression of mutant p53, and had little effect on Bcl-2. RT-PCR indicated that Hsp70 expression was high in the early stage of MFH ( |
---|---|
ISSN: | 0100-879X 1414-431X 1414-431X |
DOI: | 10.1590/1414-431X20143808 |