Input-driven chaotic dynamics in vortex spin-torque oscillator

A new research topic in spintronics relating to the operation principles of brain-inspired computing is input-driven magnetization dynamics in nanomagnet. In this paper, the magnetization dynamics in a vortex spin-torque oscillator driven by a series of random magnetic field are studied through a nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-12, Vol.12 (1), p.21651-21651, Article 21651
Hauptverfasser: Imai, Yusuke, Nakajima, Kohei, Tsunegi, Sumito, Taniguchi, Tomohiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new research topic in spintronics relating to the operation principles of brain-inspired computing is input-driven magnetization dynamics in nanomagnet. In this paper, the magnetization dynamics in a vortex spin-torque oscillator driven by a series of random magnetic field are studied through a numerical simulation of the Thiele equation. It is found that input-driven synchronization occurs in the weak perturbation limit, as found recently. As well, chaotic behavior is newly found to occur in the vortex core dynamics for a wide range of parameters, where synchronized behavior is disrupted by an intermittency. Ordered and chaotic dynamical phases are examined by evaluating the Lyapunov exponent. The relation between the dynamical phase and the computational capability of physical reservoir computing is also studied.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-26018-z