Discovery of rafoxanide as a novel agent for the treatment of non-small cell lung cancer
Non-small cell lung cancer (NSCLC), which accounts for approximately 85% of all lung cancer cases, is associated with a poor outcome. Rafoxanide is an anthelmintic drug that inhibits tumor growth in certain malignancies. However, its impact on NSCLC remains unknown. In this study, we examined the ef...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2023-01, Vol.13 (1), p.693-693, Article 693 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Non-small cell lung cancer (NSCLC), which accounts for approximately 85% of all lung cancer cases, is associated with a poor outcome. Rafoxanide is an anthelmintic drug that inhibits tumor growth in certain malignancies. However, its impact on NSCLC remains unknown. In this study, we examined the effect of rafoxanide on NSCLC and dissected the underlying mechanism. The results showed that rafoxanide significantly inhibited the growth, invasion, and migration of NSCLC cells. Besides, rafoxanide can induce NSCLC cell apoptosis and cell cycle arrest in a dose-dependent manner. RNA-seq analysis revealed that genes associated with endoplasmic reticulum stress (ER) stress responses were activated. Mechanistically, we found Rafoxanide can induce ER stress and activate the unfolded protein response (UPR). Apoptosis was activated by excessive ER stress, and autophagy was activated to partially alleviate ER stress. In vivo, we found that rafoxanide inhibited the growth of A549 and H1299 xenograft mouse models without severe side effects. Collectively, the present study indicates that rafoxanide may be a candidate drug for the treatment of NSCLC. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-27403-y |