An On-chip Spiking Neural Network for Estimation of the Head Pose of the iCub Robot

In this work, we present a neuromorphic architecture for head pose estimation and scene representation for the humanoid iCub robot. The spiking neuronal network is fully realized in Intel's neuromorphic research chip Loihi and precisely integrates the issued motor commands to estimate the iCub&...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in neuroscience 2020-06, Vol.14, p.551-551
Hauptverfasser: Kreiser, Raphaela, Renner, Alpha, Leite, Vanessa R. C., Serhan, Baris, Bartolozzi, Chiara, Glover, Arren, Sandamirskaya, Yulia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we present a neuromorphic architecture for head pose estimation and scene representation for the humanoid iCub robot. The spiking neuronal network is fully realized in Intel's neuromorphic research chip Loihi and precisely integrates the issued motor commands to estimate the iCub's head pose in a neuronal path-integration process. The neuromorphic vision system of the iCub is used to correct for drift in the pose estimation. Positions of objects in front of the robot are memorized using on-chip synaptic plasticity. We present real-time robotic experiments using 2-degrees of freedom (DoF) of the robot's head, show precise path integration, visual reset, and object position learning on-chip. We discuss the requirements for integrating the robotic system and neuromorphic hardware with current technologies.
ISSN:1662-453X
1662-4548
1662-453X
DOI:10.3389/fnins.2020.00551