Widefield imaging of rapid pan-cortical voltage dynamics with an indicator evolved for one-photon microscopy

Widefield imaging with genetically encoded voltage indicators (GEVIs) is a promising approach for understanding the role of large cortical networks in the neural coding of behavior. However, the limited performance of current GEVIs restricts their deployment for single-trial imaging of rapid neurona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-10, Vol.14 (1), p.6423-6423, Article 6423
Hauptverfasser: Lu, Xiaoyu, Wang, Yunmiao, Liu, Zhuohe, Gou, Yueyang, Jaeger, Dieter, St-Pierre, François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Widefield imaging with genetically encoded voltage indicators (GEVIs) is a promising approach for understanding the role of large cortical networks in the neural coding of behavior. However, the limited performance of current GEVIs restricts their deployment for single-trial imaging of rapid neuronal voltage dynamics. Here, we developed a high-throughput platform to screen for GEVIs that combine fast kinetics with high brightness, sensitivity, and photostability under widefield one-photon illumination. Rounds of directed evolution produced JEDI-1P, a green-emitting fluorescent indicator with enhanced performance across all metrics. Next, we optimized a neonatal intracerebroventricular delivery method to achieve cost-effective and wide-spread JEDI-1P expression in mice. We also developed an approach to correct optical measurements from hemodynamic and motion artifacts effectively. Finally, we achieved stable brain-wide voltage imaging and successfully tracked gamma-frequency whisker and visual stimulations in awake mice in single trials, opening the door to investigating the role of high-frequency signals in brain computations. Genetically encoded voltage indicators need fast and large signals to allow widefield imaging of rapid neuronal activity. Here, the authors develop the indicator JEDI-1P and demonstrate pan-cortical voltage imaging and gamma-frequency tracking in awake mice in single trials.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-41975-3