3D Inductive Frequency Selective Structures Using Additive Manufacturing and Low-Cost Metallization

The use of additive manufacturing and different metallization techniques for prototyping radio frequency components such as antennas and waveguides are rising owing to their high precision and low costs. Over time, additive manufacturing has improved so that its utilization is accepted in satellite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-01, Vol.22 (2), p.552
Hauptverfasser: Vásquez-Peralvo, Juan Andrés, Tamayo-Domínguez, Adrián, Pérez-Palomino, Gerardo, Fernández-González, José Manuel, Wong, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of additive manufacturing and different metallization techniques for prototyping radio frequency components such as antennas and waveguides are rising owing to their high precision and low costs. Over time, additive manufacturing has improved so that its utilization is accepted in satellite payloads and military applications. However, there is no record of the frequency response in the millimeter-wave band for inductive 3D frequency selective structures implemented by different metallization techniques. For this reason, three different prototypes of dielectric 3D frequency selective structures working in the millimeter-wave band are designed, simulated, and manufactured using VAT photopolymerization. These prototypes are subsequently metallized using metallic paint atomization and electroplating. The manufactured prototypes have been carefully selected, considering their design complexity, starting with the simplest, the square aperture, the medium complexity, the woodpile structure, and the most complex, the torus structure. Then, each structure is measured before and after the metallization process using a measurement bench. The metallization used for the measurement is nickel spray flowed by the copper electroplating. For the electroplating, a detailed table showing the total area to be metallized and the current applied is also provided. Finally, the effectiveness of both metallization techniques is compared with the simulations performed using CST Microwave Studio. Results indicate that a shifted and reduced band-pass is obtained in some structures. On the other hand, for very complex structures, as in the torus case, band-pass with lower loss is obtained using copper electroplating, thus allowing the manufacturing of inductive 3D frequency selective structures in the millimeter-wave band at a low cost.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22020552