Solar Hydrogen Variable Speed Control of Induction Motor Based on Chaotic Billiards Optimization Technique
This paper introduces a brand-new, inspired optimization algorithm (the chaotic billiards optimization (C-BO) approach) to effectively develop the optimal parameters for fuzzy PID techniques to enhance the dynamic response of the solar–hydrogen drive of an induction motor. This study compares fuzzy-...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2023-02, Vol.16 (3), p.1110 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces a brand-new, inspired optimization algorithm (the chaotic billiards optimization (C-BO) approach) to effectively develop the optimal parameters for fuzzy PID techniques to enhance the dynamic response of the solar–hydrogen drive of an induction motor. This study compares fuzzy-PID-based C-BO regulators to fuzzy PID regulators based on particle swarm optimization (PSO) and PI-based PSO regulators to provide speed control in solar–hydrogen, induction-motor drive systems. The model is implemented to simulate the production and storage of hydrogen while powering an induction-motor drive which provides a great solution for the renewable energy storage problem in the case of solar pumping systems. MATLAB/Simulink 2021a is used to simulate and analyze the entire operation. The laboratory prototype is implemented in real time using a DSP-DS1104 board. Based on the simulation and experimental results, the proposed fuzzy-PID-based C-BO has reduced speed peak overshoot by 45.3% when compared to a fuzzy PID based PSO speed regulator and by 68.13% when compared to a PI-based PSO speed controller in the case of a large-scale motor. Additionally, the proposed speed regulator has a 6.1% faster speed rising time than a fuzzy-PID-based PSO and a 9.5% faster speed rising time than a PI–PSO speed controller. It has an excellent dynamic responsiveness value when compared to the other speed regulators. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en16031110 |