Hesperetin-7-O-glucoside/β-cyclodextrin Inclusion Complex Induces Acute Vasodilator Effect to Inhibit the Cold Sensation Response during Localized Cold-Stimulate Stress in Healthy Human Subjects: A Randomized, Double-Blind, Crossover, and Placebo-Controlled Study

Hesperetin, a citrus flavonoid, exerts vasodilation and is expected to improve endothelial function and alleviate cold sensation by activating nervous system thermal transduction pathways. In this randomized, double-blind, crossover, and placebo-controlled study, the purpose was to assess the effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrients 2023-08, Vol.15 (17), p.3702
Hauptverfasser: Kapoor, Mahendra P., Moriwaki, Masamitsu, Abe, Aya, Morishima, So, Ozeki, Makoto, Sato, Norio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hesperetin, a citrus flavonoid, exerts vasodilation and is expected to improve endothelial function and alleviate cold sensation by activating nervous system thermal transduction pathways. In this randomized, double-blind, crossover, and placebo-controlled study, the purpose was to assess the effect of an orally administered highly bioavailable soluble inclusion complex of hesperetine-7-O-glucoside with β-cyclodextrin (HEPT7G/βCD; SunActive® HES/HCD) on cold sensation response during localized cold-stimulated stress in healthy humans. A significant (p ≤ 0.05) dose-dependent increase in skin cutaneous blood flow following relatively small doses of HEPT7G/βCD inclusion complex ingestion was confirmed, which led to a relatively effective recovery of peripheral skin temperature. The time delay of an increase in blood flow during rewarming varied significantly between low- and high-dose HEPT7G/βCD inclusion complex consumption (e.g., 150 mg and 300 mg contain 19.5 mg and 39 mg of HEPT7G, respectively). In conclusion, the substantial alteration in peripheral skin blood flow observed during local cooling stress compared to placebo suggested that deconjugated hesperetin metabolites may have a distinct capacity for thermoregulatory control of human skin blood flow to maintain a constant body temperature during cold stress exposure via cutaneous vasodilation and vasoconstriction systems.
ISSN:2072-6643
2072-6643
DOI:10.3390/nu15173702