Anti-inflammatory and immunomodulating effects of the bacterial lysate in the in vivo models of aseptic lymphadenitis and pneumococcal pneumonia

Bacterial lysates may produce immunoregulatory effects in the inflammatory diseases that are not directly caused by infectious agents; they may also stimulate the immune response against pathogens which are not a part of the lysate composition. Imudon® is a polyvalent bacterial lysate that is availa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medit͡s︡inskai͡a︡ immunologii͡a 2020-01, Vol.22 (1), p.111-122
Hauptverfasser: Kryshen, K. L., Kukharenko, A. E., Vichare, A. S., Gaidai, E. A., Kryshen, A. A., Gushchin, Ya. A., Kalyuzhin, O. V., Makarova, M. N., Makarov, V. G., Mahadevan, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bacterial lysates may produce immunoregulatory effects in the inflammatory diseases that are not directly caused by infectious agents; they may also stimulate the immune response against pathogens which are not a part of the lysate composition. Imudon® is a polyvalent bacterial lysate that is available in orodispersible tablets. However, the influence of this drug product on aseptic inflammation and immune defense against the infectious agents, the antigens of which are not contained in this preparation have not been studied so far. The aim of this study, therefore, was to determine the anti-inflammatory and immunomodulating effects of Imudon® using the models of aseptic lymphadenitis (in Wistar rats) and pneumococcal pneumonia (in Balb/c mice), i.e., the conditions not related to the specific components of the bacterial lysate. Lymphadenitis was induced in rats by administration of λ-carrageenan into a cervical lymph node via an open operative approach. Whereas pneumonia was induced in mice by administering Streptococcus pneumoniae suspension intranasally. The choice of pneumococcus was determined by the absence of pneumococcal antigens in Imudon®, i.e., it cannot be a direct inducer of adaptive immune response against pneumococcal infection. Imudon® was administered intragastrically as a crushed tablet suspension following a therapeutic-preventive regimen (for 14 days daily until the induction of inflammation and for 3 [in the lymphadenitis model] or 5 days [in the model of pneumonia] in three doses thereafter). In the lymphadenitis model, Imudon® demonstrated both local and systemic anti-inflammatory responses manifested in the reduced number of circulating leucocytes and lower TNFα levels and by ameliorated histological features of inflammation in the operated lymph node. In rats, the anti-inflammatory effect was most pronounced when the product was administered at a dose of 2.2 mg/kg (equivalent to a human therapeutic dose) and 6.6 mg/kg. In the model of pneumonia, administration of Imudon® at 4.44 mg/kg (equivalent to a human therapeutic dose) and 13.32 mg/kg demonstrated a trend towards increased survival rate as compared to the control group. On Day 5 after infection Imudon® (4.44 and 13.32 mg/kg) decreased significantly the severity of inflammation and bacterial titer in the lungs. The titer of anti-pneumococcal immunoglobulins A in the bronchoalveolar lavage fluid were found to be higher in the Imudon® treated group (13.32 mg/kg) compared to cont
ISSN:1563-0625
2313-741X
DOI:10.15789/1563-0625-AAI-1758