Solar and wind energy enhances drought resilience and groundwater sustainability

Water scarcity brings tremendous challenges to achieving sustainable development of water resources, food, and energy security, as these sectors are often in competition, especially during drought. Overcoming these challenges requires balancing trade-offs between sectors and improving resilience to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-11, Vol.10 (1), p.4893-8, Article 4893
Hauptverfasser: He, Xiaogang, Feng, Kairui, Li, Xiaoyuan, Craft, Amy B., Wada, Yoshihide, Burek, Peter, Wood, Eric F., Sheffield, Justin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Water scarcity brings tremendous challenges to achieving sustainable development of water resources, food, and energy security, as these sectors are often in competition, especially during drought. Overcoming these challenges requires balancing trade-offs between sectors and improving resilience to drought impacts. An under-appreciated factor in managing the water-food-energy (WFE) nexus is the increased value of solar and wind energy (SWE). Here we develop a trade-off frontier framework to quantify the water sustainability value of SWE through a case study in California. We identify development pathways that optimize the economic value of water in competition for energy and food production while ensuring sustainable use of groundwater. Our results indicate that in the long term, SWE penetration creates beneficial feedback for the WFE nexus: SWE enhances drought resilience and benefits groundwater sustainability, and in turn, maintaining groundwater at a sustainable level increases the added value of SWE to energy and food production. The role of solar and wind energy (SWE) in management of water-food-energy (WFE) nexus is largely neglected. Here the authors developed a trade-off frontier framework to quantify the water sustainability value of SWE and applied it in California, where they found that SWE penetration creates beneficial feedback for the WFE nexus by enhancing drought resilience and benefits groundwater sustainability over long run.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-12810-5