Optimizing Single-Shot Coherent Power-Spectrum Scattering Imaging Adaptively by Tuning Feedback Coefficient for Practical Exposure Conditions
With only one piece of the power-spectrum pattern, the single-shot coherent power-spectrum imaging can provide a clear object image for real-time applications even if the object is hidden by opaque scattering media, in which the feedback coefficient β value for the reconstruction with least retrieva...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2019-09, Vol.9 (18), p.3676 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With only one piece of the power-spectrum pattern, the single-shot coherent power-spectrum imaging can provide a clear object image for real-time applications even if the object is hidden by opaque scattering media, in which the feedback coefficient β value for the reconstruction with least retrievals and fastest speed has to be pre-estimated through time-consuming iterative loops. Here we report a method for estimating the optimal β value from the captured raw power-spectrum images adaptively to optimize the single-shot coherent power-spectrum imaging for practical exposure conditions. The results demonstrate that, based on exposure level analysis of the captured raw power-spectrum images even of underexposure, moderate exposure, and overexposure cases, the β value could be quickly determined with a compact expression for the algorithm to achieve clear reconstruction output efficiently. The proposed method helps to push ahead of the coherent diffractive imaging devices for real-time imaging through turbid mediums in Artificial Intelligence (AI), driving assistance, and flight assistance applications. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app9183676 |