Synergy through integration of digital cognitive tests and wearable devices for mild cognitive impairment screening
Advances in mobile computing platforms and the rapid development of wearable devices have made possible the continuous monitoring of patients with mild cognitive impairment (MCI) and their daily activities. Such rich data can reveal more subtle changes in patients' behavioral and physiological...
Gespeichert in:
Veröffentlicht in: | Frontiers in human neuroscience 2023-04, Vol.17, p.1183457-1183457 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Advances in mobile computing platforms and the rapid development of wearable devices have made possible the continuous monitoring of patients with mild cognitive impairment (MCI) and their daily activities. Such rich data can reveal more subtle changes in patients' behavioral and physiological characteristics, providing new ways to detect MCI anytime, anywhere. Therefore, we aimed to investigate the feasibility and validity of digital cognitive tests and physiological sensors applied to MCI assessment.
We collected photoplethysmography (PPG), electrodermal activity (EDA) and electroencephalogram (EEG) signals from 120 participants (61 MCI patients, 59 healthy controls) during rest and cognitive testing. The features extracted from these physiological signals involved the time domain, frequency domain, time-frequency domain and statistics. Time and score features during the cognitive test are automatically recorded by the system. In addition, selected features of all modalities were classified by tenfold cross-validation using five different classifiers.
The experimental results showed that the weighted soft voting strategy combining five classifiers achieved the highest classification accuracy (88.9%), precision (89.9%), recall (88.2%), and F1 score (89.0%). Compared to healthy controls, the MCI group typically took longer to recall, draw, and drag. Moreover, during cognitive testing, MCI patients showed lower heart rate variability, higher electrodermal activity values, and stronger brain activity in the alpha and beta bands.
It was found that patients' classification performance improved when combining features from multiple modalities compared to using only tablet parameters or physiological features, indicating that our scheme could reveal MCI-related discriminative information. Furthermore, the best classification results on the digital span test across all tasks suggest that MCI patients may have deficits in attention and short-term memory that came to the fore earlier. Finally, integrating tablet cognitive tests and wearable sensors would provide a new direction for creating an easy-to-use and at-home self-check MCI screening tool. |
---|---|
ISSN: | 1662-5161 1662-5161 |
DOI: | 10.3389/fnhum.2023.1183457 |