A Step-indexed Semantics of Imperative Objects
Step-indexed semantic interpretations of types were proposed as an alternative to purely syntactic proofs of type safety using subject reduction. The types are interpreted as sets of values indexed by the number of computation steps for which these values are guaranteed to behave like proper element...
Gespeichert in:
Veröffentlicht in: | Logical methods in computer science 2009-12, Vol.5, Issue 4 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Step-indexed semantic interpretations of types were proposed as an
alternative to purely syntactic proofs of type safety using subject reduction.
The types are interpreted as sets of values indexed by the number of
computation steps for which these values are guaranteed to behave like proper
elements of the type. Building on work by Ahmed, Appel and others, we introduce
a step-indexed semantics for the imperative object calculus of Abadi and
Cardelli. Providing a semantic account of this calculus using more
`traditional', domain-theoretic approaches has proved challenging due to the
combination of dynamically allocated objects, higher-order store, and an
expressive type system. Here we show that, using step-indexing, one can
interpret a rich type discipline with object types, subtyping, recursive and
bounded quantified types in the presence of state. |
---|---|
ISSN: | 1860-5974 1860-5974 |
DOI: | 10.2168/LMCS-5(4:2)2009 |