Nonuniform Dependence of a Two-Component NOVIKOV System in Besov Spaces
Considered herein is the Cauchy problem of the two-component Novikov system. In the periodic case, we first constructed an approximate solution sequence that possesses the nonuniform dependence property; then, by applying the energy methods, we managed to prove that the difference between the approx...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2023-04, Vol.11 (9), p.2041 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Considered herein is the Cauchy problem of the two-component Novikov system. In the periodic case, we first constructed an approximate solution sequence that possesses the nonuniform dependence property; then, by applying the energy methods, we managed to prove that the difference between the approximate and actual solution is negligible, thus succeeding in proving the nonuniform dependence result in both supercritical Besov spaces Bp,rs(T)×Bp,rs(T) with s>max{32,1+1p},1≤p≤∞,1≤rmax{32,1+1p},1≤p≤∞,1≤r |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math11092041 |