Nonuniform Dependence of a Two-Component NOVIKOV System in Besov Spaces

Considered herein is the Cauchy problem of the two-component Novikov system. In the periodic case, we first constructed an approximate solution sequence that possesses the nonuniform dependence property; then, by applying the energy methods, we managed to prove that the difference between the approx...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-04, Vol.11 (9), p.2041
Hauptverfasser: Yu, Shengqi, Liu, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Considered herein is the Cauchy problem of the two-component Novikov system. In the periodic case, we first constructed an approximate solution sequence that possesses the nonuniform dependence property; then, by applying the energy methods, we managed to prove that the difference between the approximate and actual solution is negligible, thus succeeding in proving the nonuniform dependence result in both supercritical Besov spaces Bp,rs(T)×Bp,rs(T) with s>max{32,1+1p},1≤p≤∞,1≤rmax{32,1+1p},1≤p≤∞,1≤r
ISSN:2227-7390
2227-7390
DOI:10.3390/math11092041