Spatial Interpolation of Daily Rainfall Data for Local Climate Impact Assessment over Greater Sydney Region

This paper presents spatial interpolation techniques to produce finer-scale daily rainfall data from regional climate modeling. Four common interpolation techniques (ANUDEM, Spline, IDW, and Kriging) were compared and assessed against station rainfall data and modeled rainfall. The performance was a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in meteorology 2015-01, Vol.2015 (2015), p.1-12
Hauptverfasser: Ji, Fei, Liu, De Li, Xie, Xiaojin, Yang, Xihua, Wang, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents spatial interpolation techniques to produce finer-scale daily rainfall data from regional climate modeling. Four common interpolation techniques (ANUDEM, Spline, IDW, and Kriging) were compared and assessed against station rainfall data and modeled rainfall. The performance was assessed by the mean absolute error (MAE), mean relative error (MRE), root mean squared error (RMSE), and the spatial and temporal distributions. The results indicate that Inverse Distance Weighting (IDW) method is slightly better than the other three methods and it is also easy to implement in a geographic information system (GIS). The IDW method was then used to produce forty-year (1990–2009 and 2040–2059) time series rainfall data at daily, monthly, and annual time scales at a ground resolution of 100 m for the Greater Sydney Region (GSR). The downscaled daily rainfall data have been further utilized to predict rainfall erosivity and soil erosion risk and their future changes in GSR to support assessments and planning of climate change impact and adaptation in local scale.
ISSN:1687-9309
1687-9317
DOI:10.1155/2015/563629