Multi-strategy Fusion Improved Adaptive Hunger Games Search

Aiming at the drawbacks of Hunger Games Search (HGS) algorithm, such as slow convergence speed and the tendency to fall into local optimum, a Multi-strategy fusion Improved Adaptive Hunger Games Search (MIA-HGS) algorithm is proposed. Firstly, a good point set is employed to generate a more diverse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Zhang, Daming, Zhao, Yanqing, Ding, Junjie, Wang, Zijian, Xu, Jiaqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aiming at the drawbacks of Hunger Games Search (HGS) algorithm, such as slow convergence speed and the tendency to fall into local optimum, a Multi-strategy fusion Improved Adaptive Hunger Games Search (MIA-HGS) algorithm is proposed. Firstly, a good point set is employed to generate a more diverse initial population. Secondly, the control strategy selection parameter is fixed in the original HGS algorithm; an adaptive adjustment parameter is proposed to replace the fixed parameters, whose dynamically tuned update strategy strengthens the global searching ability. Finally, to further jump out of the local optimum, a mutation operation based on Logarithmic spiral opposition-based learning is performed on a population for a certain condition. Simulation experiments are carried out for 23 benchmark functions and the UAV aerial planning problem. The results show that MIA-HGS solves more accurately and converges more rapidly than the original HGS algorithm on 23 benchmark functions, with MIA-HGS leading on 69.5% of the tested functions and tying with HGS on 21.7% of the tested functions. It also showed better performance than the other algorithms on the UAV flight planning problem.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3289856