Foundations of Total Functional Data-Flow Programming
The field of declarative stream programming (discrete time, clocked synchronous, modular, data-centric) is divided between the data-flow graph paradigm favored by domain experts, and the functional reactive paradigm favored by academics. In this paper, we describe the foundations of a framework for...
Gespeichert in:
Veröffentlicht in: | Electronic proceedings in theoretical computer science 2014-06, Vol.153 (Proc. MSFP 2014), p.143-167 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The field of declarative stream programming (discrete time, clocked synchronous, modular, data-centric) is divided between the data-flow graph paradigm favored by domain experts, and the functional reactive paradigm favored by academics. In this paper, we describe the foundations of a framework for unifying functional and data-flow styles that differs from FRP proper in significant ways: It is based on set theory to match the expectations of domain experts, and the two paradigms are reduced symmetrically to a low-level middle ground, with strongly compositional semantics. The design of the framework is derived from mathematical first principles, in particular coalgebraic coinduction and a standard relational model of stateful computation. The abstract syntax and semantics introduced here constitute the full core of a novel stream programming language. |
---|---|
ISSN: | 2075-2180 2075-2180 |
DOI: | 10.4204/EPTCS.153.10 |