Climate-Adapted Potential Vegetation—A European Multiclass Model Estimating the Future Potential of Natural Vegetation
Climate change will alter the site conditions for European vegetation. This is likely to shift the potential distribution of species and habitats outside its current boundaries. To enable future projections on shifts in vegetation potentials, we fitted a multiclass model to the current potential nat...
Gespeichert in:
Veröffentlicht in: | Forests 2023-01, Vol.14 (2), p.239 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Climate change will alter the site conditions for European vegetation. This is likely to shift the potential distribution of species and habitats outside its current boundaries. To enable future projections on shifts in vegetation potentials, we fitted a multiclass model to the current potential natural vegetation (PNV) of Europe using climatic predictors. The model was then applied to climate data of the time slice 2061–2080 with the Representative Concentration Pathways (RCPs) 4.5 and RCP 8.5. With an accuracy of 0.78, simulations well represented the site-equivalent vegetation types of the current PNV across Europe. Projections show drastic shifts in vegetation potentials in all parts of Europe. Boreal forests could lose up to 75% of their current potential, while Mediterranean Quercus forests and steppes would double their potential area. Deserts are projected to be on the rice, and the potential of currently widespread vegetation such as Fagus forests would be translocated. These estimated alterations of European vegetation potentials could have great effects on the stability of current forests, affecting nature conservation strategies and forest management. |
---|---|
ISSN: | 1999-4907 1999-4907 |
DOI: | 10.3390/f14020239 |