In situ optical measurement of particles in sediment plumes generated by a pre-prototype polymetallic nodule collector

This study presents in situ, high-resolution optical measurements of particle size distributions (PSD) within sediment plumes generated by a pre-prototype deep seabed nodule collector vehicle operating in the abyssal Pacific Ocean. These measurements were obtained using a cutting-edge instrument, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-10, Vol.14 (1), p.23894-13, Article 23894
Hauptverfasser: Mousadik, Souha El, Ouillon, Raphael, Muñoz-Royo, Carlos, Slade, Wayne, Pottsmith, Chuck, Leeuw, Thomas, Alford, Matthew H., Mikkelsen, Ole A., Peacock, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents in situ, high-resolution optical measurements of particle size distributions (PSD) within sediment plumes generated by a pre-prototype deep seabed nodule collector vehicle operating in the abyssal Pacific Ocean. These measurements were obtained using a cutting-edge instrument, the LISST-RTSSV sensor. The data collected in situ reveal marked differences compared to previously reported laboratory-based, ex situ measurements. The grain size and other key particle shape characteristics are found to be dependent on multiple factors, including the collector vehicle maneuvers, the time elapsed following sediment discharge, and the complex hydrodynamic processes that generate the sediment in suspension. Significantly, the PSD from a highly complex succession of straight-line maneuvers converges to that of the canonical case of a simple straight-line driving maneuver within a timescale of ten minutes. Our results underscore the importance of parameterizing sediment plume transport models based on well-informed, comprehensive PSDs of detrained suspended sediment measured in situ at adequate timescales and in regions no longer strongly influenced by active and complex hydrodynamic processes.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-72991-y