Process Control Strategies in Chemical Looping Gasification—A Novel Process for the Production of Biofuels Allowing for Net Negative CO2 Emissions

Chemical looping gasification (CLG) is a novel gasification technique, allowing for the production of a nitrogen-free high calorific synthesis gas from solid hydrocarbon feedstocks, without requiring a costly air separation unit. Initial advances to better understand the CLG technology were made dur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-06, Vol.10 (12), p.4271
Hauptverfasser: Dieringer, Paul, Marx, Falko, Alobaid, Falah, Ströhle, Jochen, Epple, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemical looping gasification (CLG) is a novel gasification technique, allowing for the production of a nitrogen-free high calorific synthesis gas from solid hydrocarbon feedstocks, without requiring a costly air separation unit. Initial advances to better understand the CLG technology were made during first studies in lab and bench scale units and through basic process simulations. Yet, tailored process control strategies are required for larger CLG units, which are not equipped with auxiliary heating. Here, it becomes a demanding task to achieve autothermal CLG operation, for which stable reactor temperatures are obtained. This study presents two avenues to attain autothermal CLG behavior, established through equilibrium based process simulations. As a first approach, the dilution of active oxygen carrier materials with inert heat carriers to limit oxygen transport to the fuel reactor has been investigated. Secondly, the suitability of restricting the air flow to the air reactor in order to control the oxygen availability in the fuel reactor was examined. Process simulations show that both process control approaches facilitate controlled and de-coupled heat and oxygen transport between the two reactors of the chemical looping gasifier, thus allowing for efficient autothermal CLG operation. With the aim of inferring general guidelines on how CLG units have to be operated in order to achieve decent synthesis gas yields, different advantages and disadvantages associated to the two suggested process control strategies are discussed in detail and optimization avenues are presented.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10124271