MicroRNA Signature in an In Vitro Keratinocyte Model of Diabetic Wound Healing
Treating diabetic wounds effectively remains a significant clinical challenge. Emerging studies suggest that microRNAs (miRNAs) play crucial roles in various physiological and pathological processes and hold promise as therapeutic tools. This study investigates the miRNA expression profile in kerati...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2024-09, Vol.25 (18), p.10125 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Treating diabetic wounds effectively remains a significant clinical challenge. Emerging studies suggest that microRNAs (miRNAs) play crucial roles in various physiological and pathological processes and hold promise as therapeutic tools. This study investigates the miRNA expression profile in keratinocytes using a cell model of diabetic wounds. Microarray analysis revealed that 43 miRNAs from wounded keratinocytes incubated under diabetic conditions (high glucose/hypoxia) exhibited a two-fold change in expression compared to those incubated under normal conditions (low glucose/normoxia). Quantitative RT-PCR confirmed significant differences in the expression of eight miRNAs, with miR-3138 and miR-3679-5p being further analyzed for their roles in keratinocyte migration. Transfection with a miR-3138 mimic and a miR-3679-5p inhibitor indicated that upregulation of miR-3138 and downregulation of miR-3679-5p enhance keratinocyte migration in both normal and diabetic wounds. Pathway and gene ontology (GO) analyses identified potential pathways and functional annotations associated with miR-3138 and miR-3679-5p in diabetic wound healing. Potential human gene targets of miR-3138 and miR-3679-5p were predicted using a three-way comparison of the TargetScan, miRDB, and DIANA databases. This study elucidates the miRNA expression signature of human keratinocytes in a diabetes-like environment, providing deeper insights into the pathogenesis of diabetic wounds. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms251810125 |