Early Warning of Systemic Risk in Commodity Markets Based on Transfer Entropy Networks: Evidence from China

This study aims to employ a causal network model based on transfer entropy for the early warning of systemic risk in commodity markets. We analyzed the dynamic causal relationships of prices for 25 commodities related to China (including futures and spot prices of energy, industrial metals, precious...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2024-06, Vol.26 (7), p.549
Hauptverfasser: Zhao, Yiran, Gao, Xiangyun, Wei, Hongyu, Sun, Xiaotian, An, Sufang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to employ a causal network model based on transfer entropy for the early warning of systemic risk in commodity markets. We analyzed the dynamic causal relationships of prices for 25 commodities related to China (including futures and spot prices of energy, industrial metals, precious metals, and agricultural products), validating the effect of the causal network structure among commodity markets on systemic risk. Our research results identified commodities and categories playing significant roles, revealing that industry and precious metal markets possess stronger market information transmission capabilities, with price fluctuations impacting a broader range and with greater force on other commodity markets. Under the influence of different types of crisis events, such as economic crises and the Russia-Ukraine conflict, the causal network structure among commodity markets exhibited distinct characteristics. The results of the effect of external shocks to the causal network structure of commodity markets on the entropy of systemic risk suggest that network structure indicators can warn of systemic risk. This article can assist investors and policymakers in managing systemic risk to avoid unexpected losses.
ISSN:1099-4300
1099-4300
DOI:10.3390/e26070549