Advancements in the Intelligent Detection of Driver Fatigue and Distraction: A Comprehensive Review

Detecting the factors affecting drivers’ safe driving and taking early warning measures can effectively reduce the probability of automobile safety accidents and improve vehicle driving safety. Considering the two factors of driver fatigue and distraction state, their influences on driver behavior a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-04, Vol.14 (7), p.3016
Hauptverfasser: Fu, Shichen, Yang, Zhenhua, Ma, Yuan, Li, Zhenfeng, Xu, Le, Zhou, Huixing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detecting the factors affecting drivers’ safe driving and taking early warning measures can effectively reduce the probability of automobile safety accidents and improve vehicle driving safety. Considering the two factors of driver fatigue and distraction state, their influences on driver behavior are elaborated from both experimental data and an accident library analysis. Starting from three modes and six types, intelligent detection methods for driver fatigue and distraction detection from the past five years are reviewed in detail. Considering its wide range of applications, the research on machine vision detection based on facial features in the past five years is analyzed, and the methods are carefully classified and compared according to their innovation points. Further, three safety warning and response schemes are proposed in light of the development of autonomous driving and intelligent cockpit technology. Finally, the paper summarizes the current state of research in the field, presents five conclusions, and discusses future trends.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14073016