Characterizing the secretome of EGFR mutant lung adenocarcinoma

Lung cancer is the leading cause of cancer related death worldwide, mainly due to the late stage of disease at the time of diagnosis. Non-invasive biomarkers are needed to supplement existing screening methods to enable earlier detection and increased patient survival. This is critical to -driven lu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in oncology 2024-01, Vol.13, p.1286821
Hauptverfasser: Luu, Jennifer K, Johnson, Fraser D, Jajarmi, Jana, Sihota, Tianna, Shi, Rocky, Lu, Daniel, Farnsworth, Dylan, Spencer, Sandra E, Negri, Gian Luca, Morin, Gregg B, Lockwood, William W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lung cancer is the leading cause of cancer related death worldwide, mainly due to the late stage of disease at the time of diagnosis. Non-invasive biomarkers are needed to supplement existing screening methods to enable earlier detection and increased patient survival. This is critical to -driven lung adenocarcinoma as it commonly occurs in individuals who have never smoked and do not qualify for current screening protocols. In this study, we performed mass spectrometry analysis of the secretome of cultured lung cells representing different stages of mutant driven transformation, from normal to fully malignant. Identified secreted proteins specific to the malignant state were validated using orthogonal methods and their clinical activity assessed in lung adenocarcinoma patient cohorts. We quantified 1020 secreted proteins, which were compared for differential expression between stages of transformation. We validated differentially expressed proteins at the transcriptional level in clinical tumor specimens, association with patient survival, and absolute concentration to yield three biomarker candidates: MDK, GDF15, and SPINT2. These candidates were validated using ELISA and increased levels were associated with poor patient survival specifically in EGFR mutant lung adenocarcinoma patients. Our study provides insight into changes in secreted proteins during driven lung adenocarcinoma transformation that may play a role in the processes that promote tumor progression. The specific candidates identified can harnessed for biomarker use to identify high risk individuals for early detection screening programs and disease management for this molecular subgroup of lung adenocarcinoma patients.
ISSN:2234-943X
2234-943X
DOI:10.3389/fonc.2023.1286821