A Performance Evaluation Scheme for Multiple Object Tracking with HFSWR

High-frequency surface wave radar (HFSWR) can detect and continuously track ship objects in real time and beyond the horizon. When ships navigate in a sea area, their motions in a time period form a scenario. The diversity and complexity of the motion scenarios make it difficult to accurately track...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2019-03, Vol.19 (6), p.1393
Hauptverfasser: Wang, Kun, Zhang, Pengju, Niu, Jiong, Sun, Weifeng, Zhao, Lun, Ji, Yonggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-frequency surface wave radar (HFSWR) can detect and continuously track ship objects in real time and beyond the horizon. When ships navigate in a sea area, their motions in a time period form a scenario. The diversity and complexity of the motion scenarios make it difficult to accurately track ships, in which failures such as track fragmentation (TF) are frequently observed. However, it is still unclear how and to what degrees the motions of ships affect the tracking performance, especially which motion patterns can cause tracking failures. This paper addresses this problem and attempts to undertake a first step towards providing an intensive quantitative performance assessment and vulnerability detection scheme for ship-tracking algorithms by proposing an evolutionary and data-mining-based approach. Low-dimensional scenarios in terms of multiple maneuvering ship objects are generated using a grammar-based model. Closed-loop feedback is introduced using evolutionary computation to efficiently collect scenarios that cause more and more tracking performance loss, which provides diversified cases for analysing using data-mining technique to discover indicators of tracking vulnerability. Results on different tracking algorithms show that more cluster and convergence patterns and longer duration of our convoy and cluster patterns in the scenarios can cause severer TF to HFSWR ship tracking.
ISSN:1424-8220
1424-8220
DOI:10.3390/s19061393