Qualitative Simulation Algorithm for Resource Scheduling in Enterprise Management Cloud Mode
Aiming at the problem of resource scheduling optimization in enterprise management cloud mode, a customizable fuzzy clustering cloud resource scheduling algorithm based on trust sensitivity is proposed. Firstly, on the one hand, a fuzzy clustering method is used to divide cloud resource scheduling i...
Gespeichert in:
Veröffentlicht in: | Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aiming at the problem of resource scheduling optimization in enterprise management cloud mode, a customizable fuzzy clustering cloud resource scheduling algorithm based on trust sensitivity is proposed. Firstly, on the one hand, a fuzzy clustering method is used to divide cloud resource scheduling into two aspects: cloud user resource scheduling and cloud task resource scheduling. On the other hand, a trust-sensitive mechanism is introduced into cloud task scheduling to prevent malicious node attacks or dishonest recommendation from node providers. At the same time, in the cloud task scheduling, cloud resources are divided according to the comprehensive performance of resources, and the trust sensitivity coefficient of each type of task resources is calculated. Then, according to the trust sensitivity coefficient, the matching cloud tasks are selected for users. Through the comparison of simulation experiments, the customized fuzzy clustering cloud resource scheduling algorithm proposed in this paper reduces the user’s cost of selecting cloud service provider in the cloud resource scheduling. It not only embodies the principle of cloud resource allocation on demand but also can give full play to the advantages of cloud resources and improve the throughput of the whole cloud system and the satisfaction of cloud users. |
---|---|
ISSN: | 1076-2787 1099-0526 |
DOI: | 10.1155/2021/6676908 |