Divided square difference cordial Labeling of join some spider graphs
Let G be a graph with its vertices and edges. On defining bijective function ρ:V(G) →{0,1,...,p}. For each edge assign the label with 1 if ρ*(ab)= | ρ(a) 2 −ρ(b) 2 /ρ(a)−ρ(b) | is odd or 0 otherwise such that |eρ(1) − eρ(0)| ≤ 1 then the labeling is called as divided square difference cordial labeli...
Gespeichert in:
Veröffentlicht in: | E3S web of conferences 2023, Vol.389, p.9040 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a graph with its vertices and edges. On defining bijective function ρ:V(G) →{0,1,...,p}. For each edge assign the label with 1 if ρ*(ab)= | ρ(a) 2 −ρ(b) 2 /ρ(a)−ρ(b) | is odd or 0 otherwise such that |eρ(1) − eρ(0)| ≤ 1 then the labeling is called as divided square difference cordial labeling graph. We prove in this paper for relatively possible set of spider graphs with atmost one legs greater than one namely J(SP(1 m ,2 n )) ,J(SP(1 m ,2 n ,3 1 )), (SP(1 m ,2 n ,3 2 )),J(SP(1 m ,2 n ,4 1 )),J(SP(1 m ,2 n ,5 1 ). AMS Mathematics Subject Classification:05C78. |
---|---|
ISSN: | 2267-1242 2267-1242 |
DOI: | 10.1051/e3sconf/202338909040 |