Divided square difference cordial Labeling of join some spider graphs

Let G be a graph with its vertices and edges. On defining bijective function ρ:V(G) →{0,1,...,p}. For each edge assign the label with 1 if ρ*(ab)= | ρ(a) 2 −ρ(b) 2 /ρ(a)−ρ(b) | is odd or 0 otherwise such that |eρ(1) − eρ(0)| ≤ 1 then the labeling is called as divided square difference cordial labeli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:E3S web of conferences 2023, Vol.389, p.9040
Hauptverfasser: Christy, T., Palani, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a graph with its vertices and edges. On defining bijective function ρ:V(G) →{0,1,...,p}. For each edge assign the label with 1 if ρ*(ab)= | ρ(a) 2 −ρ(b) 2 /ρ(a)−ρ(b) | is odd or 0 otherwise such that |eρ(1) − eρ(0)| ≤ 1 then the labeling is called as divided square difference cordial labeling graph. We prove in this paper for relatively possible set of spider graphs with atmost one legs greater than one namely J(SP(1 m ,2 n )) ,J(SP(1 m ,2 n ,3 1 )), (SP(1 m ,2 n ,3 2 )),J(SP(1 m ,2 n ,4 1 )),J(SP(1 m ,2 n ,5 1 ). AMS Mathematics Subject Classification:05C78.
ISSN:2267-1242
2267-1242
DOI:10.1051/e3sconf/202338909040