Impacts of Tibetan Plateau Spring Snowmelt on Spring and Summer Precipitation in Northwest China
Snow on the Tibetan Plateau (TP) is an important signal for the prediction of East Asian climate. In this study, the relationship between the TP spring snowmelt and spring and summer precipitation in Northwest China (NWC) was investigated, along with the possible mechanisms linked to the impacts of...
Gespeichert in:
Veröffentlicht in: | Atmosphere 2023-03, Vol.14 (3), p.466 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Snow on the Tibetan Plateau (TP) is an important signal for the prediction of East Asian climate. In this study, the relationship between the TP spring snowmelt and spring and summer precipitation in Northwest China (NWC) was investigated, along with the possible mechanisms linked to the impacts of snowmelt on precipitation. The results showed that the TP spring snowmelt had significant impacts on spring and summer precipitation in NWC. For example, when there was a large spring snowmelt in the central- eastern TP, the spring and summer precipitation in the Hexi Corridor and southeast NWC was excessive, especially in summer; when there was a large spring snowmelt in the northern TP, the spring and summer precipitation was deficient across the whole of NWC, while a large spring snowmelt in the western TP led to deficient spring and summer precipitation in eastern NWC but excessive precipitation in western NWC. The possible mechanisms for this included the fact that more spring snowmelt over the TP led to higher soil moisture contents, which further resulted in weakened subtropical westerly and enhanced ridge over Xinjiang. By changing the TP thermal forcing, these anomalous atmospheric circulation conditions transported water vapor into NWC, thus creating excessive summer precipitation in that region. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos14030466 |