Probing universalities in d > 2 CFTs: from black holes to shockwaves
A bstract Gravitational shockwaves are insensitive to higher-curvature corrections in the action. Recent work found that the OPE coefficients of lowest-twist multi-stress-tensor operators, computed holographically in a planar black hole background, are insensitive as well. In this paper, we analyze...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2019-11, Vol.2019 (11), p.1-29, Article 139 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
Gravitational shockwaves are insensitive to higher-curvature corrections in the action. Recent work found that the OPE coefficients of lowest-twist multi-stress-tensor operators, computed holographically in a planar black hole background, are insensitive as well. In this paper, we analyze the relation between these two limits. We explicitly evaluate the two-point function on a shockwave background to all orders in a large central charge expansion. In the geodesic limit, we find that the ANEC exponentiates in the multi-stress-tensor sector. To compare with the black hole limit, we obtain a recursion relation for the lowest-twist products of two stress tensors in a
spherical
black hole background, letting us efficiently compute their OPE coefficients and prove their insensitivity to higher curvature terms. After resumming the lowest-twist stress-tensors and analytically continuing their contributions to the Regge limit, we find a perfect agreement with the shockwave computation. We also discuss the role of double-trace operators, global degenerate states, and multi-stress-tensor conformal blocks. These holographic results suggest the existence of a larger universal structure in higher-dimensional CFTs. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP11(2019)139 |