Antireflective vertical-cavity surface-emitting laser for LiDAR
Multijunction vertical-cavity surface-emitting lasers (VCSELs) have gained popularity in automotive LiDARs, yet achieving a divergence of less than 16° (D86) is difficult for conventional extended cavity designs due to multiple-longitudinal-mode lasing. Our innovation, the antireflective vertical-ca...
Gespeichert in:
Veröffentlicht in: | Nature communications 2024-02, Vol.15 (1), p.1105-1105, Article 1105 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multijunction vertical-cavity surface-emitting lasers (VCSELs) have gained popularity in automotive LiDARs, yet achieving a divergence of less than 16° (D86) is difficult for conventional extended cavity designs due to multiple-longitudinal-mode lasing. Our innovation, the antireflective vertical-cavity surface-emitting laser (AR-VCSEL), addresses this challenge by introducing an antireflective light reservoir, where the electric field intensity is substantially higher than the gain region. This reduces the required cavity length for minimal divergence, preserving the single-longitudinal-mode lasing. A 6-junction AR-VCSEL array showcases a halved divergence and tripled brightness compared to its conventional counterpart. Various multijunction AR-VCSEL array designs achieve a divergence range of 8° to 16° (D86). Notably, a 7 μm AR-VCSEL emitter achieves 28.4 mW in single transverse mode lasing. AR-VCSEL stands out among semiconductor lasers, offering a well-balanced power density and brightness, making it a cost-effective solution for long-distance LiDARs. The antireflective cavity concept may inspire diverse applications in photonic devices beyond LiDARs.
The authors showcase an innovative anti-reflective vertical-cavity surface-emitting laser (AR-VCSEL) that achieves low divergence and maintains a single-mode lasing. The 6-junction AR-VCSEL array demonstrates low divergence from 8° to 16° (D86) and tripled brightness compared to conventional counterparts. The AR-VCSEL offers an excellent avenue for long-distance LiDARs. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-44754-w |