A New Approach to Decoupled Non-Resonant Polishing

Two-dimensional vibration-assisted polishing (2D-VAP) is a new polishing approach proposed in recent years, which is considered to be very suitable for the polishing of micro-optical parts and micro-structured surfaces. The advantages of the 2D-VAP approach are as follows: A very high relative veloc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2019-07, Vol.10 (7), p.484
Hauptverfasser: Li, Yucheng, Zhou, Xiaoqin, Wang, Guilian, Ma, Peiqun, Wang, Rongqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional vibration-assisted polishing (2D-VAP) is a new polishing approach proposed in recent years, which is considered to be very suitable for the polishing of micro-optical parts and micro-structured surfaces. The advantages of the 2D-VAP approach are as follows: A very high relative velocity can be obtained between the workpiece and the polishing tool; the desired motion trajectory can be formed in one polishing cycle. However, there are still some problems to be solved in the 2D-VAP approach, mainly involving: The vibration frequency of the resonant excitation cannot be regulated, which makes it difficult to adapt to the processing demands of different materials; the theoretical model of removal function has been studied in few papers; and motion coupling occurs easily between the horizontal and vertical directions, which affects the trajectory synthesized at the polishing tool. In order to solve these problems, a new approach to decoupled non-resonant polishing is developed in this paper, and its effectiveness is investigated by the theoretical analysis and polishing experiments. Theoretical studies of removal function show that the vibration frequency, vibration amplitude and loading force are proportional to the removal depth. The comparison of experimental and modeling results of removal function show that they have good coherence, and the correctness of the theoretical model of removal function is verified. In addition, the stability experiments of removal function prove that the polishing approach has better stability and is beneficial to the convergence of workpiece surface.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi10070484