Assessing Impacts of Atmospheric Conditions on Efficiency and Siting of Large-Scale Direct Air Capture Facilities

The cost and efficiency of direct air capture (DAC) of carbon dioxide (CO2) will be decisive in determining whether this technology can play a large role in decarbonization. To probe the role of meteorological conditions on DAC we examine, at 1 × 1° resolution for the continental United States (U.S....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JACS Au 2024-05, Vol.4 (5), p.1883-1891
Hauptverfasser: Cai, Xuqing, Coletti, Mark A., Sholl, David S., Allen-Dumas, Melissa R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cost and efficiency of direct air capture (DAC) of carbon dioxide (CO2) will be decisive in determining whether this technology can play a large role in decarbonization. To probe the role of meteorological conditions on DAC we examine, at 1 × 1° resolution for the continental United States (U.S.), the impacts of temperature, humidity, atmospheric pressure, and CO2 concentration for a representative amine-based adsorption process. Spatial and temporal variations in atmospheric pressure and CO2 concentration lead to strong variations in the CO2 available in ambient air across the U.S. The specific DAC process that we examine is described by a process model that accounts for both temperature and humidity. A process that assumes the same operating choices at all locations in the continental U.S. shows strong variations in performance, with the most influential variables being the H2O gas phase volume fraction and temperature, both of which are negatively correlated with DAC productivity for the specific process that we consider. The process also shows a moderate positive correlation of ambient CO2 with productivity and recovery. We show that optimizing the DAC process at seven representative locations to reflect temporal and spatial variations in ambient conditions significantly improves the process performance and, more importantly, would lead to different choices in the sites for the best performance than models based on a single set of process conditions. Our work provides a framework for assessing spatial variations in DAC performance that could be applied to any DAC process and indicates that these variations will have important implications in optimizing and siting DAC facilities.
ISSN:2691-3704
2691-3704
DOI:10.1021/jacsau.4c00082