Growth of a Renormalized Operator as a Probe of Chaos

We propose that the size of an operator evolved under holographic renormalization group flow shall grow linearly with the scale and interpret this behavior as a manifestation of the saturation of the chaos bound. To test this conjecture, we study the operator growth in two different toy models. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in High Energy Physics 2022-10, Vol.2022, p.1-8
Hauptverfasser: Huang, Xing, Zhang, Binchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose that the size of an operator evolved under holographic renormalization group flow shall grow linearly with the scale and interpret this behavior as a manifestation of the saturation of the chaos bound. To test this conjecture, we study the operator growth in two different toy models. The first one is a MERA-like tensor network built from a random unitary circuit with the operator size defined using the integrated out-of-time-ordered correlator (OTOC). The second model is an error-correcting code of perfect tensors, and the operator size is computed using the number of single-site physical operators that realize the logical operator. In both cases, we observe linear growth.
ISSN:1687-7357
1687-7365
DOI:10.1155/2022/9216427